

unleash your own chain reaction | unchain your future

Hotel Inn Bangkok Silom, 23 May 2018

knowledgehut

our core motto

changing the way we work

Safer Smarter Enterprising

cloudyBoss believes in *glocalisation* and increasing market *complexity* with world dynamics shifting

to

to

distributed stable and sustainable value systems

8b humans interacting via clusters/ecosystems with b's of smarter **glocal SME's**

SKYE technology in context

- **SKYE** enterprise blockchain cluster ecosystems
- **NEXT+** cloud enterprise management engine
- **OT** automation & dematerialization program
- 360 solutions for industries & smarter cities
- startospheric acceleration programs

backed by

SME's governments public institutions start-ups and incubators large and medium enterprises

ackground

Agenda

- 1. the journey so far
- 2. core concepts & mechanics
- 3. SKYE live demonstrations
- 4. from use cases to case studies
- 5. a quantum leap into the future
- 6. wrap-up

BBC explains cryptocurrencies in 2 minutes

Bitcoin explained: How do cryptocurrencies work? - BBC News

the mother of all bubble charts, or the mother chart of all bubbles

blockchain the journey so far

...origins

When	Who	What		
1979	Ralph Merkle (below)	" <i>Hash trees</i> " US patent no 4309569		
1982	Lamport, Shostak, Pease	"The Byzantine Generals Problem" paper, basis for consensus protocols		
Be 1		Top Hash hash(Hash Hash 0 hash(Hash 1 hash(Hash		
		Hash 0-0 hash(L1) L1 L2 L3 Hash Hash Hash Hash 1-0 hash(L3) Hash L3 L4 Data Blocks		

the 90's

when	who	what		
1979	Ralph Merkle	"Hash trees" US patent no 4309569		
1982	Lamport, Shostak, Pease	"The Byzantine Generals Problem" paper, basis for consensus protocols		
1991/92	Stornetta, Haber, Bayer	"Chain of blocks" then "Merkle trees" paper applying hash trees to data validation		
1993	Cynthia Dwork, Moni Naor	"computing cost as a solution to spam", basis for "Proof of Work" concept in mining		
Jakobsson, Juels Further formalisation of the PoW concept		Further formalisation of the PoW concept		
1999	Castro, Liskov	PBFT (Practical Byzantine Fault Tolerance) algorithm		

Pricing via Processing or Combatting Junk Mail* We present a computational technique for combatting justic mail, in particular, a controlling account to a should present to account The main block is to account We present a computational technique for combatting jusk mult, in particular, and controlling access to a shared resource, in general. The main idea is to require a need to compute a moderately hard, but not instructable. Instruct on a order to an and controlling access to a shared resource, in general. The main idea is to require a user to compute a understely hard, but not intractable. function in order to gain access to the measures thus torestely hard, but not intractable function of a state of the second second second a user to compute a moderately hand, but not intractable, function in order to gain access to the resource, thus preventing friveless use. To this end we suggest second access for the resource, hand, one incompatibule estimation assume make models and an animal acces to the resource, thus preventing frivalous use. To this end we sugged several pricing functions, based on, respectively, extracting square reads modulo a prime, the bird Schwarz Schwar the Fut Shamir signature scheme, and the Ong Schoort Shamir (cracked) signature

the 00's

when	who	what			
1979	Ralph Merkle	"Hash trees" US patent no 4309569			
1982	Lamport, Shostak, Pease	"The Byzantine Generals Problem" paper, basis for consensus protocols			
1991/92	Stornetta, Haber, Bayer	"Chain of blocks" then "Merkle trees" paper applying hash trees to data validation			
1993	Cynthia Dwork, Moni Naor	"computing cost as a solution to spam", basis for "Proof of Work" concept in mining			
Jakobsson, Juels		Further formalisation of the PoW concept			
1999	Castro, Liskov	PBFT (Practical Byzantine Fault Tolerance) algorithm			
Jul 2008	Giovanni Di Noto "the money-poly conundrum: basis for a decentralised digital currency frame Griffiths University (Brisbane Australia) ENV100 paper submission				
Sep 2008	Lehman Brothers	Investment bank Lehman Brothers collapse (GFC starts)			
Oct 2008	Sataahi Nakamata	"Bitcoin" white paper solving the double-spending conundrum. metzdowd.com			
Jan 2009	Saloshi Nakamolo	bitcoin.org, version 0.1 of the bitcoin software and mining of 1 st bitcoin block			
TIMAL					

me...

Wright

Definitely Didn't Prove he Is Satoshi Nakamoto

the 10's

when	who	o what				
				bitcoin	ethereum	
			concept	cryptocurrency	world computer	
	0		coin release method	early mining	through ICO	
			block time	~10 minutes	~12/15 seconds	
			protocol	SHA-256	ETHASH	
			hardware property	ASIC	ASIC-resistant	
HYPERLEDGER FABRIC SDK Go Safer Smarter Enterprising				Enterprise Block Chain Clusters in minutes		
Jul 2015	Vitalik Buterin and team	ethereum world computer an	d scripted (solidity	language) smart c	ontracts	
Dec 2015	Linux Foundation toom	Open source Hyperledger project for enterprise blockchain starts				
Jul 2017		Hyperledger Fabric SDK 1.0	Iger Fabric SDK 1.0 announced			
	cloudyBoss team	SKYE (enterprise blockchain clusters + unscripted skye-contracts) released				

blockchain core concepts & mechanics

hashing

- non-trivially translates a value to another
- uniquely translates (~nil collisions)
- irreversible 1-way function

hash tree

Keyword	Description
Merkle Tree	a binary tree where the parent root hash is a function of child hashes derived from data leaves
Transaction	a value, balance, change of state or other data, corresponding to a leaf in a hash tree
Block	a group of transactions (leaves) ultimately pointing to the same top (or root) hash

hash tree arithmetic 1/3

comparing data (without any Merkle tree arithmetic)

hash tree arithmetic 2/3

efficiently verifies the integrity of leaves (data) with hashes

hash tree arithmetic 3/3

identifying validation errors more quickly via hashes

IJKLMNOP

MNOP

OP

MN

IJKL

KL

IJ

• Transactions are interdependent (unalterable)

ABCDEFGHIJKLMNOP ROOT

- They are validated via their Merkle paths
- A Merkle path requires **log**₂(**N**) hashes

EEGH

GH

EF

ABCDEFGH

ABCD

AB

CD

block-chain = ever-growing Merkle tree

what's the nonce for?

why bitcoin is ASIC* centric?

GPU Graphics Processing Unit

FPGA Field-Programmable Gate Array

Alternative ASIC-resistant Proofs

• **PoS** | Proof of Stake

example: ethereum ecosystem uses PoS how much cryptos do you hold? for how long?

• Pol | Proof of Importance example: NEM ecosystem uses Pol how much cryptos do you hold?

how many transactions?

Keyword	Description
Immutability	The property of an auditable transaction which irrefutable details (similarly to a posted transaction in a conventional accounting ledger) are no longer altered
Distributed ledger DLT, hyper ledger	shared immutable ledger kept up-to-date over discrete nodes (organisations and/or computers) which are all part of a same cluster, ring or ecosystem of nodes
Node	A single instance of a distributed ledger such as a server in a multi-node ecosystem
Ecosystem, cluster, ring	A group of at least 3 nodes each carrying an instance of a same distributed ledger
Byzantine fault tolerance	a consensus protocol for ecosystems to run when nodes crash or act maliciously
Consensus	an agreement on the state of the ledger reached via PBFT, PoW, PoS, PoI
Propagation	The act of propagating a transaction across all nodes of an ecosystem
Genesis transaction	The first transaction in a distributed ledger

multi-chain ecosystems

Keyword	Description			
Mining	process by which bitcoin rewards nodes for solving math puzzles to create new coins			
Trust-less	a decentralised modus operandi devoted of censorship typical of open blockchains			
Cryptocurrency	digital currency relying on mining and open blockchains to avoid double-spending			
Bitcoin, Ether, Litecoin	cryptocurrencies, each with their own blockchain protocol and other rules			
Multichain	meta-system of various ecosystems with distinct blockchain protocols			

open vs private blockchain ecosystems

Keyword	Description		
Enterprise blockchain SKYE, hyper-ledger, ebc, private blockchain	a set of blockchain DLT use cases <u>other than</u> cryptocurrencies. Mining, ICO, PoW or trustlessness are generally alien to private blockchains. Vice-versa, permissions (to control participating nodes), speed and consensus are required for data integrity.		
MSP	Member Service Provider. An admin node in a private blockchain		
Permission	Control mechanism to allow node participation into a private ecosystem and/or grant access to data		

Enterprise DLT SKYE live demo

some context

legend

- genesis node (ring MSP)
- ring of nodes (cluster)

baseline ring node

independent node

SKYE rings

- 1 node belongs to 0 or more rings
- 1 ring has min 3 or more nodes
- 1 ring has 1 or more modules

node data

- Any node (ring or not) data can be encrypted
- Authorised users see encrypted data
- Ring data is immutable (chained)
- Permitted ring data is encrypted
- Permitted nodes see ring data

cloudyBoss environment

creating a SKYE blockchain cluster takes seconds

aut

1. organisations **nd1** and **nd2** agree to form **RGA 2. nd1** initialises **RGA**

nd1

3. nd1 refers nd2 and asks nd2 for a reference

4. nd2 refers nd1

5. aut confirms/activates once (genesis, BFT) RGA

SKYE ring

RGA

some context

SKYE minimum workflow levels

- all cB transactions are subject to workflow
- SKYE workflow floor level triggers propagation
- SKYE workflow floor level depends on each module

posting data to a SKYE blockchain cluster

SKYE ring

ndx

1. nd1 creates a record with a low workflow

nd1

- 2. the record exists only in nd1
- 3. the record workflow is set to a cluster floor level
- 4. the record now propagates across all nodes
- 5. nd2 and all other nodes see the new record

some context

SKYE multi-stage e-contract options

- actions achieved via *delayed* document:
 - content published, invoice issued, payment triggered, stock released, etc.

- floor level workflows activate action/s on a:
 - "unanimity" basis | (100%) all stakeholders, or
 - "quorum" basis | n% (a few) stakeholder/s, or
 - "first" basis | (0%) 1st party to set floor level

SKYE multi-stage e-contracts

nd1

1. nd1 and nd2 agree on the following terms:

- a) nd1 will provide services to nd2
- b) nd2 shall pay nd1 invoice once both nd1+nd2 agree that the job is completed
- 2. nd1 creates a [100% quorum basis] e-contract and [delayed] invoice
- 3. nd1 creates and nd2 e-signs the SKYE e-contract
- **4.** *nd1* sets workflow to "completion" (50% quorum) \rightarrow nothing happens
- 5. nd2 sets workflow to "completion" (100% quorum) → invoice [posted]

nd2

SKYE e-contract

from use cases to case studies

a need for independent parties to operate together under a safe, streamlined tamper-proof ecosystem

conventional international organisational structure **A SKYE** non use case

1 x node for this in cloudyBoss

innovative international organisational structures MaaS (Multinational as a Service)

DLT-based franchising organisational model enhanced efficiencies, decreased complexity

If you are a franchisor yet to consider DLT, your peers already are !

from MLM to cBM (cluster business model)

- more relevant to hyper-connected world than old-school geo-segmentation
- scale-neutral distributed fairness + infinite returns at any level
- asymptotic margin control via ring level factor

consortium trivialisation

within the context of one or a few projects rather than nd6 ongoing operations

nd4

nd7

nd5

nd8

nd1

nd3

nd2

Until now, consortiums formed when 1 supplier alone could not enter a large tender (and related project).

A consortium pools capabilities from different independent parties and distributes risk exposures.

Commercial lawyers tend to get involved in the drafting of complex MOU* and other legal documents.

smart contracts trivialise consortiums allowing pooling and risk mitigation on **any-value projects anywhere**, especially where the parties do not know each other.

* MOU = Memorandum of Understanding

Draft MOU*

RFT

docs

industry-based registries

- 1. complex value chains / provenance / recalls
- 2. risk analysis / insurance / benchmarking
- 3. product categorisations / market baskets
- 4. self-regulatory data / factual v fake data
- 5. pooled research / segmentation
- 6. credit records / fraud detection
- 7. governance breaches
- 8. industry standards

more registry use cases

solving the fake news social epidemic

immutable academic records

global patents

The newest strongest data integrity standard

e-government | any type of public registries

land and property registries

electronic medical records

The newest strongest data integrity standard

criminal records

constituencies expect any government to adopt highest possible standards of governance and provide absolute assurance on the integrity of any type of public records

e-government | standards, accreditations & certifications

e-government | the "electronic evidence" legal case

TCP/IP is <u>NOT</u> BF* tolerant

as it sets a new highest standard on data integrity, blockchain unveils pitfalls with all sub-standard protocols, and challenges all existing legislations on digital evidences.

cloudyBoss Omni-currency Banking Rotation Account

cloudyBoss Pty Ltd - Sydney Australia | www.cloudyBoss.com | info@cloudyBoss.com

- most agile 21st century cloud SME's operate globally
- multicurrency treasury is a core dimension of their business
- ... but it is very difficult to open a multicurrency banking account
 - larger international banks have strict prohibitive access criteria and are expensive
 - bitcoin and other cryptocurrencies are niche and/or risk-exposed to regulations
 - smaller local banks are unable to maintain multiple foreign currency positions

.360Bank ring

a quantum leap into the future

DLT is currently based on blockchain technology

blockchain technology relies on cryptography

QC (quantum computing) trivialises PK encryption

QC ~instantaneously solves classic hard encryption

- •QC threatens / trivialises blockchain technology
- ...but QC means unchained immutability

3 dimensions to a quantum world

QC (quantum computer) on silicon a reality

2018 Australian of the Year **Scientia Prof Michelle Simmons** UNSW (Sydney – Australia) | CQC²T Precision atom qubits achieve major quantum computing milestone

December 2017

Scientia Prof Andrew Dzurak

Scientia Prof Sven Rogge

PhD candidate Sam Gorman

Pioneering low-noise long-life (30 secs) QC nano-manufacturing

changing the rules in quantum communications

Lead scientist Pan Jianwei

and his research team @ QUESS | China Quantum Experiments at Space Scale

- *long-distance (1200 km) message transmission*
- one-time pad **QKD** (Quantum Key Distribution)
- detectable attempts to intercept / eavesdrop
- basis for a quantum-secure commercial net
- integrated satellite QC + ground QC nets

cloudyBoss research team on post-Boolean QC

"If you believe you understand quantum mechanics, then you do NOT understand quantum mechanics" Richard Feynman

Shrivastava

Kiran Chandrasekaran

Bhatnagar

Raghav

Giovanni Di Noto

Uta Bever

qu**bit** is an unfortunate name, especially the **bit** part

- a **bit** (binary digit) is either **true** or **false** (0 or 1)
- a qubit is described by a wave function
- qudits are described via Bloch spheres
- QC needs post-Boolean algebra

George Boole 1815-1864

unchained QC immutable hyper-ledgers

encryption **might** still be required for permissions... but QC ecosystems might be QKD encrypted

> blockchain is superfluous in a QC ecosystem this is because QC properties guarantee data immutability, inherently protect data, detect and back-trace unwanted interactions

wrap up

who	stage	options	
	Beginner	 Self-learn Join an open-source group Attend other workshops on the topic of interest Attend my blockchain technology workshops Apply to an internship with pertinent organisation such as cB 	
coder / developer	Advanced	 Re/assess personal (or company) goals sharpen skills across all DLT areas, or Specialise into one or few DTL areas Assess opportunities to support Explore quantum cryptography 	

Enterprise DLT or Cryptocurrency ? Is that even a question ?

who	scope	options	
project implementer	all areas	 Reconcile project goals against pertinent DLT area Scan market for best solution provider/s Evaluate and activate solution/s 	
client organisations	all industries	 Nominate enabling party (both geo and functional scopes) Assess business model vs existing or new DLT use cases Engage with potential DLT ecosystem node stakeholders Conduct thorough feasibility research to define scope/s Implement (solely or as a consortium where pertinent) 	
industry / institutional representation bodies	all areas	 Prepare for, define or strengthen your industry DLT future Facilitate DLT ecosystems for your members Become active DLT ecosystem operators 	

"If you look at the various strategies available for dealing with a new technology, sticking your head in the sand is not the most plausible strategy."

Ralph Merkle

who	protocol	options
DLT industry players	any	 Mitigate industry <i>reputational risks</i> via self-regulation Solve / define the <i>multi-chain protocol challenge</i> Prepare for post-quantum <i>unchained</i> DLT future Distributed immutability beyond ledger/business Solve <i>single internet vulnerability</i> multi-threat
	220	Censored sech
A Chi	н 💮 Т	Web 4.0 p2p quantum multi-net
CLOUD BOSS	skve	Interledger

info@cloudyboss.com