
Building an Effective CI Pipeline

Dragan Rakas
June 15, 2018

2

Senior Software Engineer in Test

About Me

M. Sc. Computer Science
B. Eng. Computer Engineering

https://www.linkedin.com/in/draganrakas/

I love to watch and play chess!

https://www.linkedin.com/in/draganrakas/

3

About Flipp

1. Helps shoppers find the
best local flyer deals

2. Extensive back-end API
that serves mobile app

3. Highly agile environment
(many deploys per week)

Agenda

● Continuous Integration Goals

● Continuous Integration Essentials

● First approach: Downstream Jobs

● Architecture

● Second approach: Declarative Pipeline

● Code Coverage

● Pipeline Optimization

5

1. Early problem detection mitigates risk

2. Encourage frequent code check-ins

3. Providing development feedback as fast as possible

Continuous Integration Goals

6

Continuous Delivery Essentials

Before Deployment

● Source Control Integration

● Unit Tests (+Coverage Report)

● Static Analysis and Linting

● Generate API Documentation

● Automated Deploy to Staging

7

Continuous Delivery Essentials

After Deployment

● Regression Tests (+Coverage Report)

● API Schema / Contract Tests

● Promote to Production

● Health Check: Regression Tests

8

Branching Strategy

FB-01

development

master

FB-02

git mergegit rebase

Pull Request Pull Request

master should be locked!

9

GitHub Feedback

First approach: Downstream Jobs

12

Architecture

git commit
git push

Web hook Delegate/
Plugin

Pull Request Builder Plugin

allure

Second approach: Declarative Pipeline

14

Declarative Pipeline

15

Pipeline Script

1. Define each stage programmatically

2. Belongs in repository as ‘Jenkinsfile’

3. Can work on any Jenkins instance

4. More scalable than downstream jobs

Code Coverage

17

Unit Test Coverage Strategy

Compile (Run Tests

Run Tests

Coverage Report

Coverage Report

Deploy

18

Regression Test Coverage Strategy

Compile

Compile:
● Instrument codebase
● Create instrumented

binary

Deploy

Deploy:
● Instrumented binary

Run Tests

Run Tests:
● Instrumented binary

writes stats to file

Coverage Report

Coverage Report:
● Same as unit test

coverage reports

Deploy

19

Coverage Example

20

Instrumentation

21

Integration Test Coverage Strategy

Compile

Compile:
● Instrument codebase
● Create instrumented

binary

Deploy

Deploy:
● Instrumented binary

Run Tests

Run Tests:
● Instrumented binary

writes stats to file

Coverage Report

Coverage Report:
● Same as unit test

coverage reports

Deploy

Pipeline Optimization

23

● “If your build is reproducible, the outputs from one machine can be
safely reused on another machine, which can make builds
significantly faster.” - Bazel Documentation

● Example:
- Application has 30 .jar file dependencies
- A code change is pushed to 1 dependent module

Caching

Solution:
- Load cached 30 .jar files from data store (e.g. from S3)
- Have a script to detect which module’s code changed
- Build and replace only the 1 modified dependency

24

Which is longer? Which one should go first?
● Running 50,000 unit tests
● Running static analysis
● Running mutation tests
● Building a .jar file

Parallelizing

It shouldn’t matter!
● All of the above are independent and can often be done at

the same time!

25

● Some companies have huge test suites (100,000+ tests)

● Categorize tests by priority and impact (sanity, smoke, regression, etc.)

● Run critical path tests for immediate feedback

● Schedule periodic builds for full regression test runs

Test Categorization

Questions?

