Dragan Rakas
June 15, 2018

About Me

ﬁiDp Senior Software Engineer in Test

ezl M. Sc. Computer Science

Ui

niverSity B. Eng. Computer Engineering

Linkedm https://www.linkedin.com/in/draganrakas/

Dragan Rakas

e A
'* J‘::i | love to watch and play chess!
S

https://www.linkedin.com/in/draganrakas/

About Flipp

1. Helps shoppers find the
best local flyer deals

2. Extensive back-end API
that serves mobile app

3. Highly agile environment
(many deploys per week)

Agenda

e Continuous Integration Goals

e Continuous Integration Essentials

® First approach: Downstream Jobs

e Architecture

e Second approach: Declarative Pipeline
e Code Coverage

e Pipeline Optimization

Continuous Integration Goals

1. Early problem detection mitigates risk
2. Encourage frequent code check-ins

3. Providing development feedback as fast as possible

Continuous Delivery Essentials

Before Deployment
e Source Control Integration
e Unit Tests (+Coverage Report)
e Static Analysis and Linting
Q e Generate APl Documentation

e Automated Deploy to Staging

Continuous Delivery Essentials

After Deployment
e Regression Tests (+Coverage Report)
e API Schema / Contract Tests
€3 ¢ Promote to Production

e Health Check: Regression Tests

Branching Strategy

master master should be locked!

git rebase glit merge

development

Pull RequesE/// \\\\Pull Request

FB-01 FB-02

GitHub Feedback

Review requested Show all reviewers

Review has been requested on this pull request. It is not required to merge. Learn more.

Some checks were not successful Hide all checks

1 failing and 4 successful checks
> ¢ a ci/circleci_enterprise: regression_test — Your tests failed on CircleCl Enterprise
v a ci/circleci_enterprise: build_container — Your tests passed on CircleCl Enterp...
v 3 ci/circleci_enterprise: build_jar — Your tests passed on CircleC! Enterprise!
v 3 ci/circleci_enterprise: deploy_to_staging — Your tests passed on CircleC| Ent...

v a ci/circleci_enterprise: unit_test — Your tests passed on CircleCl| Enterprise!

° This branch has no conflicts with the base branch

Merging can be performed automatically.

Squash and merge ~ | You can also open this in GitHub Desktop or view command line instructions.

Details

Details

Details

Details

Details

©C00L0000 ",

w

Name |

01 Pull Search-API| Branch

02 Run MW Unit Tests

03 Build MW Jar Files

04 Deploy Instrumented MW Jar

05 Run MW Regression Tests

06 Deploy Normal MW Jar

07 Run MW Schema Tests

Architecture

Pull Request Builder Plugin

| |

Q e 33'3%“6’"
X i.vi / .‘,’

GitHub Jenkins

|

git commit IMl

git push
pytest allure

Jun 13

11:34

Start

Pull Branch

Declarative Pipeline

Deploy
Pull Branch Run Unit Tests Build Jar Files Instrumented
Jars
2s 58s 1min 52s 25s
Deploy Run Regression
Run Unit Tests Build Jar Files Instrumented Jars Tests

on ¢ Deploy Normal Run Schema
Regression
Jars Tests
Tests
2min 7s 22s S5min 21s
nin 7 5min 21s
Deploy Normal
Jars Run Schema Tests End

Pipeline Script

24 lines (2@ sloc) 368 Bytes

pipeline {

Define each stage programmatically SgenE L labeL. "JeRKINS SUave" T
. . . . stages {
Belongs in repository as ‘Jenkinsfile’ e
script {
. . # . Shell Scriy aa
Can work on any Jenkins instance) a;
}
}

More scalable than downstream jobs

stage('Run Unit Tests') {

steps {
script {
#:xs Shell Seript .-
}
}
}
.. Remaining Pipeline Stages ..

fliop.

Unit Test Coverage Strategy

Run Tests

Coverage Report

Coverage Report

flipp

©— Regression Test Coverage Strategy

Compile:

e Instrument codebase

e Create instrumented
binary

Run Tests:
e Instrumented binary
writes stats to file

Coverage Report

Deploy: Coverage Report:
e Instrumented binary e Same as unit test
coverage reports

(r J
I._l
o
0

int fibcache] 13 /J/linitial

int f£fib(int i) //fast Fibonac

0
I,.J

int €3

switch (i)

{
case —
case e return ~
default:
if (fibcache(i))
{
return fibcache(i);
}
else
{
t. = EFExb (1 —)
fibcache(i) = t + f£ib(i -)
return fibcache(i);
}s:
}:

Instrumentation

int fibcachell 158 Sl Anieially -

int fib(int i) //fast Fibonacci
{
ant. t3
|visited[1l] =
switch (i)

-
]

{
case :| visited[2] = ~
case sl visited[3] = ;| return s
default:
|visited[4] = 7 |
2 CCEaxbcecachei))
!
| visited[5] = 7|
return fibcache(i);
}
else
{
| visited[6] = 7|
t = fib(1i -)
fibcache(i) = t + f£fib(i -)
return fibcache(i):;
};
T

-’
]

|visited[7] =

flipp

@— Integration Test Coverage Strategy

Compile:

e Instrument codebase

e Create instrumented
binary

Run Tests:
e Instrumented binary
writes stats to file

Coverage Report

Deploy: Coverage Report:
e Instrumented binary e Same as unit test
coverage reports

Caching

“If your build is reproducible, the outputs from one machine can be
safely reused on another machine, which can make builds
significantly faster.” - Bazel Documentation

Example:
Application has 30 .jar file dependencies
A code change is pushed to 1 dependent module

Solution:
Load cached 30 .jar files from data store (e.g. from S3)
Have a script to detect which module’s code changed
Build and replace only the 1 modified dependency

Parallelizing

Which is longer? Which one should go first?
e Running 50,000 unit tests
e Running static analysis
e Running mutation tests
e Building a .jar file

It shouldn’t matter!
o All of the above are independent and can often be done at
the same time!

Test Categorization

e Some companies have huge test suites (100,000+ tests)
o (Categorize tests by priority and impact (sanity, smoke, regression, etc.)
o Run critical path tests for immediate feedback

e Schedule periodic builds for full regression test runs

@pytest.mark.sanity

def test_middleware_is_running_correct_version(environment_host):

Questions?

