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Senior Software Engineer in Test

About Me

M. Sc.  Computer Science
B. Eng. Computer Engineering

https://www.linkedin.com/in/draganrakas/

I love to watch and play chess!

https://www.linkedin.com/in/draganrakas/


3

About Flipp

1. Helps shoppers find the 
best local flyer deals

2. Extensive back-end API 
that serves mobile app

3. Highly agile environment 
(many deploys per week)



Agenda

● Continuous Integration Goals

● Continuous Integration Essentials

● First approach: Downstream Jobs

● Architecture

● Second approach: Declarative Pipeline

● Code Coverage

● Pipeline Optimization
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1. Early problem detection mitigates risk

2. Encourage frequent code check-ins

3. Providing development feedback as fast as possible

Continuous Integration Goals
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Continuous Delivery Essentials

Before Deployment

● Source Control Integration

● Unit Tests (+Coverage Report)

● Static Analysis and Linting

● Generate API Documentation

● Automated Deploy to Staging
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Continuous Delivery Essentials

After Deployment

● Regression Tests (+Coverage Report)

● API Schema / Contract Tests

● Promote to Production

● Health Check: Regression Tests
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Branching Strategy

FB-01

development

master

FB-02

git mergegit rebase

Pull Request Pull Request

master should be locked!
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GitHub Feedback



First approach: Downstream Jobs
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Architecture

git commit
git push

Web hook Delegate/
Plugin

Pull Request Builder Plugin

allure



Second approach: Declarative Pipeline
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Declarative Pipeline
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Pipeline Script

1. Define each stage programmatically

2. Belongs in repository as ‘Jenkinsfile’

3. Can work on any Jenkins instance

4. More scalable than downstream jobs



Code Coverage
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Unit Test Coverage Strategy

Compile ( Run Tests

Run Tests

Coverage Report

Coverage Report

Deploy
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Regression Test Coverage Strategy

Compile

Compile:
● Instrument codebase
● Create instrumented 

binary

Deploy

Deploy:
● Instrumented binary

Run Tests

Run Tests:
● Instrumented binary 

writes stats to file

Coverage Report

Coverage Report:
● Same as unit test 

coverage reports

Deploy
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Coverage Example
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Instrumentation
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Integration Test Coverage Strategy

Compile

Compile:
● Instrument codebase
● Create instrumented 

binary

Deploy

Deploy:
● Instrumented binary

Run Tests

Run Tests:
● Instrumented binary 

writes stats to file

Coverage Report

Coverage Report:
● Same as unit test 

coverage reports

Deploy



Pipeline Optimization
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● “If your build is reproducible, the outputs from one machine can be 
safely reused on another machine, which can make builds 
significantly faster.” - Bazel Documentation

● Example: 
- Application has 30 .jar file dependencies
- A code change is pushed to 1 dependent module

Caching

Solution:
- Load cached 30 .jar files from data store (e.g. from S3)
- Have a script to detect which module’s code changed
- Build and replace only the 1 modified dependency
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Which is longer? Which one should go first?
● Running 50,000 unit tests
● Running static analysis
● Running mutation tests
● Building a .jar file

Parallelizing

It shouldn’t matter!
● All of the above are independent and can often be done at 

the same time!
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● Some companies have huge test suites (100,000+ tests)

● Categorize tests by priority and impact (sanity, smoke, regression, etc.)

● Run critical path tests for immediate feedback

● Schedule periodic builds for full regression test runs

Test Categorization



Questions?


